
Unknown Malcode Detection and the Imbalance

Problem

Robert Moskovitch1, Dima Stopel1, Clint Feher1, Nir Nissim1, Nathalie Japkowicz2,

Yuval Elovici1

1 Deutsche Telekom Laboratories at Ben Gurion University,

Department of Information Systems Engineering,

Ben Gurion UniversityBe‘er Sheva, 84105 Israel

{robertmo, stopel, clint, nirni, elovici}@bgu.ac.il
2 School of Information Technology and Engineering,

University of Ottawa,

Ottawa, Ontario K1N 6N5, Canada

nat@site.uottawa.ca

Abstract. The recent growth in network usage has motivated the creation of

new malicious code for various purposes. Today‘s signature-based antiviruses

are very accurate for known malicious code, but can not detect new malicious

code. Recently, classification algorithms were used successfully for the

detection of unknown malicious code. But, these studies involved a test

collection with a limited size and the same malicious: benign file ratio in both

the training and test sets, a situation which does not reflect real-life conditions.

We present a methodology for the detection of unknown malicious code, which

examines concepts from text categorization, based on n-grams extraction from

the binary code and feature selection. We performed an extensive evaluation,

consisting of a test collection of more than 30,000 files, in which we

investigated the class imbalance problem. In real-life scenarios, the malicious

file content is expected to be low, about 10% of the total files. For practical

purposes, it is unclear as to what the corresponding percentage in the training

set should be. Our results indicate that greater than 95% accuracy can be

achieved through the use of a training set that has a malicious file content of

less than 33.3%.

Keywords: Unknown Malicious Code Detection, Machine Learning,

Classification, Imbalance Problem.

Contact Person:

Robert Moskovitch

Deutsche Telekom Laboratories at Ben Gurion University, Ben Gurion University

Be‘er Sheva, 84105 Israel

Email: robertmo@bgu.ac.il

mailto:robertmo@bgu.ac.il

1 Introduction

The term malicious code (malcode) commonly refers to pieces of code, not

necessarily executable files, which are intended to harm, generally or in particular, the

specific owner of the host. Malcodes are classified, mainly based on their transport

mechanism, into four main categories: worms, viruses, Trojans and new group that is

becoming more common, which is comprised of remote access Trojans and

backdoors. The recent growth in high-speed internet connections and in internet

network services has led to an increase in the creation of new malicious codes for

various purposes, based on economic, political, criminal or terrorist motives (among

others). Some of these codes have been used to gather information, such as passwords

and credit card numbers, as well as behavior monitoring.

Current anti-virus technology is primarily based on two approaches: signature-based

methods, which rely on the identification of unique strings in the binary code; while

being very precise, it is useless against unknown malicious code [1]. Moreover, these

can be overcome by a variant after checking it with a black box anti-virus check [2]

The second approach involves heuristic-based methods, which are based on rules

defined by experts, which define a malicious behavior, or a benign behavior, in order

to enable the detection of unknown malcodes [3]. Other proposed methods include

behavior blockers, which attempt to detect sequences of events in operating systems,

and integrity checkers, which periodically check for changes in files and disks.

However, besides the fact that these methods can be bypassed by viruses, their main

drawback is that, by definition, they can only detect the presence of a malcode after it

has been executed.

Therefore, generalizing the detection methods to be able to detect unknown malcodes

is crucial. Recently, classification algorithms were employed to automate and extend

the idea of heuristic-based methods. As we will describe in more detail shortly, the

binary code of a file is represented by n-grams and classifiers are applied to learn

patterns in the code and classify large amounts of data. A classifier is a rule set which

is learnt from a given training-set, including examples of classes, both malicious and

benign files in our case. Recent studies, which we survey in the next section

[4,5,6,7,8], have shown that this is a very successful strategy. However, these studies

present evaluations based on test collections, having similar proportion of malicious

versus benign files in the test collections (50% of malicious files). This proportion has

two potential drawbacks. These proportions do not reflect real life situation, in which

malicious code is commonly significantly less than 50% and additionally these

studies, as will be shown later, might report optimistic results. Recent survey1 made

by McAfee indicates that about 4% of search results from the major search engines on

the web contain malicious code. Additionally, it was found that above 15% of the

files in the KaZaA network contained malicious code2. Thus, we assume that the

percentage of malicious files in real life is about or less than 10%, but we also

consider other possible percentages.

1 McAfee Study Finds 4 Percent of Search Results Malicious,By Frederick Lane,June 4, 2007

[http://www.newsfactor.com/story.xhtml?story_id=010000CEUEQO]
2 S. Shin, J. Jung, H. Balakrishnan, Malware Prevalence in the KaZaA File-Sharing Network,

Internet Measurement Conference (IMC), Brazil, October 2006.

http://www.newsfactor.com/story.xhtml?story_id=010000CEUEQO
http://nms.lcs.mit.edu/~jyjung
http://nms.lcs.mit.edu/~hari
http://www.imconf.net/imc-2006/

In this study, we present a methodology for malcode categorization based on concepts

from text categorization. We present an extensive and rigorous evaluation of many

factors in the methodology, based on eight types of classifiers. The evaluation is

based on a test collection 10 times larger than any previously reported collection,

containing more than 30,000 files. We introduce the class imbalance problem, which

refers to domains in which the proportions of each class instances is not equal, in the

context of our task, in which we evaluate the classifiers for five levels of malcode

content (percentages) in the training-set and 17 (percentages) levels of malcode

content in the test-set. We start with a survey of previous relevant studies. We

describe the methods we used, including: concepts from text categorization, data

preparation, and classifiers. We present our results and finally discuss them.

2. Background

2.1 Detecting Unknown Malcode via Machine Learning

Over the past five years, several studies have investigated the direction of detecting

unknown malcode based on its binary code. [4] were the first to introduce the idea of

applying machine learning (ML) methods for the detection of different malcodes

based on their respective binary codes. They used three different feature extraction

(FE) approaches: program header, string features and byte sequence features, in

which they applied four classifiers: a signature-based method (anti-virus), Ripper – a

rule-based learner, Naïve Bayes and Multi-Naïve Bayes. This study found that all of

the ML methods were more accurate than the signature-based algorithm. The ML

methods were more than twice as accurate when the out-performing method was

Naïve Bayes, using strings, or Multi-Naïve Bayes using byte sequences. [5]

introduced a framework that used the common n-gram (CNG) method and the k

nearest neighbor (KNN) classifier for the detection of malcodes. For each class,

malicious and benign, a representative profile was constructed and assigned a new

executable file. This executable file was compared with the profiles and matched to

the most similar. Two different data sets were used: the I-worm collection, which

consisted of 292 Windows internet worms and the win32 collection, which consisted

of 493 Windows viruses. The best results were achieved by using 3-6 n-grams and a

profile of 500-5000 features. [6] presented a collection that included 1971 benign and

1651 malicious executables files. N-grams were extracted and 500 features were

selected using the information gain measure [8]. The vector of n-gram features was

binary, presenting the presence or absence of a feature in the file and ignoring the

frequency of feature appearances (in the file). In their experiment, they trained several

classifiers: IBK (KNN), a similarity based classifier called TFIDF classifier, Naïve

Bayes, SVM (SMO) and Decision tree (J48). The last three of these were also

boosted. Two main experiments were conducted on two different data sets, a small

collection and a large collection. The small collection included 476 malicious and 561

benign executables and the larger collection included 1651 malicious and 1971 benign

executables. In both experiments, the four best-performing classifiers were Boosted

J48, SVM, boosted SVM and IBK. Boosted J48 out-performed the others. The

authors indicated that the results of their n-gram study were better than those

presented by [4]. Recently, [6] reported an extension of their work, in which they

classified malcodes into families (classes) based on the functions in their respective

payloads. In the categorization task of multiple classifications, the best results were

achieved for the classes' mass mailer, backdoor and virus (no benign classes). In

attempts to estimate the ability to detect malicious codes based on their issue dates,

these techniques were trained on files issued before July 2003, and then tested on 291

files issued from that point in time through August 2004. The results were, as

expected, lower than those of previous experiments. Those results indicate the

importance of maintaining the training set by acquisition of new executables, in order

to cope with unknown new executables. [8] presented a hierarchical feature selection

approach which enables the selection of n-gram features that appear at rates above a

specified threshold in a specific virus family, as well as in more than a minimal

amount of virus classes (families). They applied several classifiers: ID3, J48 Naïve

Bayes, SVM- and SMO to the data set used by [4] and obtained results that were

better than those obtained through traditional feature selection, as presented in [4],

which mainly focused on 5-grams. Additionally, [9] presented to use the frequency of

the n-grams in the files to select them as alternative to information gain based

selection criterion.

2.2 The Imbalance Problem

In machine learning the data is, often, presented as a list of labeled examples, in

which an example is described by a vector of features and an additional special

feature which is the class (e.g., malicious/benign). Thus, the data is actually a matrix,

in which each example is a row having n features and a class, which are the columns.

Often there are equal numbers of examples for each class. These general proportions

are important since most of the classifiers are probabilistic and thus they induce the

general proportions of the classes in the dataset. For evaluation purposes the dataset is

divided into two datasets: training set, which is used to train a classifier and which

actually represents the world to the learner, and a test set which represents the real life

scenario. Whenever there is a significant difference in the proportions of the numbers

of examples for the classes, which happens often as a result of less available examples

of a specific class, it might affect the accuracy of the classifier. This case is called the

class imbalance problem.

The class imbalance problem was first noticed by the machine learning research

community a little over a decade ago (e.g.,[10,11,12]). As just discussed, it typically

occurs when there are significantly more instances from one class relative to other

classes. In such cases most standard classifiers tend to misclassify the instances of the

low represented classes. In certain cases of extreme imbalances, the classifier may go

as far as to classify all the data with the label of the large class, thus, completely

ignoring the data from the small class. More and more researchers realized that the

performance of their classifiers may be suboptimal due to the fact that the datasets are

not balanced. This problem is even more important in fields where the natural datasets

are highly imbalanced in the first place [13], like the problem we describe.

Over the years, the machine learning community has addressed the issue of class

imbalances following two general strategies. The first one, which is classifier-

independent, consists of balancing the original data set, using different kinds of

undersampling or oversampling approaches. In particular, researchers have

experimented with random sampling, where instances from the training set are either

duplicated or eliminated at random (e.g., [14]); directed sampling, where specific

instances are targeted for undersampling or oversampling with the idea of

strengthening the most relevant data and weakening the least relevant ones (e.g., [14],

[10]) ; and artificial sampling, where the smaller class is oversampled with artificially

generated data designed to augment the minority class without creating the risk of

overfitting [15]. The second way involves modifying the classifiers in order to adapt

them to the data sets. In particular, these approaches look for ways of incorporating

misclassification costs into the classification process and assigning higher

misclassification costs to the minority class so as to compensate for its small size.

This was done for a variety of different classifiers such as Neural networks [16]

Random Forests [17], and SVM [18].

However, in our problem unlike in other problems, the data is not imbalanced in the

training set, but rather in real life conditions, which we reflect by the test set. Thus,

we don‘t need an algorithm to overcome the imbalanced data, but rather to understand

the optimal construction of a training set to achieve the best performance in real life

conditions. Our research is, thus, more in line with the work of [19], which considers

the question of what proportion of examples of each class is most appropriate for

learning if a only a limited number of training instances can be used altogether. Their

work, considers the case of decision tree induction on twenty-six different data sets.

We, on the other hand, focus on the single problem of interest here—malcode

detection—but consider eight different classifiers.

Another way in which our work relates to the research emanating from the class

imbalance community concerns the choice of an evaluation metric, as discussed in

Section 4.2.

3 Methods

3.1 Text Categorization

For the detection and acquisition of unknown malicious code, we suggest the use of

well-studied concepts from information retrieval (IR) and more specific text

categorization. In our problem, binary files (executables) are parsed and n-gram terms

are extracted. Each n-gram term in our problem is analogous to a word in the textual

domain. We hereby describe IR concepts which we used in this study.

Salton presented the vector space model [20] to represent a textual file as a bag of

words. After parsing the text and extracting the words, a vocabulary, of the entire

collection of words is constructed. Each of these words may appear zero to multiple

times in a document and at least in a single document. The vocabulary is the vector of

terms which was extracted from the entire set of documents. Each term in the

vocabulary can be described by its frequency in the entire collection, often called

document frequency, which is later used for the term weighting. For each document a

vector of terms in the size of the vocabulary is created, such that each index in the

vector represents the term frequency (TF) in the document. Formula 1 shows the

definition of a normalized TF, in which the term frequency is divided by the maximal

appearing term in the document with values in the range of [0-1]. An extended

representation is the TF Inverse Document Frequency (TFIDF), which combines the

frequency of a term in the document (TF) and its frequency in the documents

collection, denoted by Document Frequency (DF), as shown in forumla 2, in which

the term's (normalized) TF value is multiplied by the IDF = log (N/DF), where N is

the number of documents in the entire file collection and DF is the number of files in

which it appears.

)max(documentinfrequencyterm

frequencyterm
TF  (1)

)log(*
DF

N
TFTFIDF  (2)

The TF representation is actually the representation which was used in previous

papers in our domain of malicious code classification. However, in the textual domain

it was shown that the tfidf is a richer and more successful representation for terms for

retrieval and categorization purposes [20], thus, we expected that using the tfidf

weighting will lead to better performance then the tf. In the textual domain often the

stop words, which are words that appear often, such as the, to, etc, are removed.

These terms can be characterized by having high DF value.

3.2 Data Set Creation

We created a data set of malicious and benign executables for the Windows operating

system, as this is the system most commonly used and most commonly attacked. To

the best of our knowledge and according to a search of the literature in this field, this

collection is the largest one ever assembled and used for research. We acquired the

malicious files from the VX Heaven website3. The dataset contains 7688 malicious

files. To identify the files, we used the Kaspersky4 anti-virus and the Windows

version of the Unix ‗file‘ command for file type identification. The malicious files

included: The files in the benign set, including executable and DLL (Dynamic Linked

3 http://vx.netlux.org

Library) files, were gathered from machines running Windows XP operating system

on our campus. More specifically the set included applications, such as messenger,

visual studio executables, anti-virus applications, zipping applications, as well as

windows inner and driver dlls, service packs installers and other installation files and

executables related to varying applications which were installed on the machines. The

benign set contained 22,735 files. The Kaspersky anti-virus program was used to

verify that these files do not contain any malicious code.

3.3 Data Preparation and Feature Selection

N-grams extraction

We parsed the files using several n-gram sequence lengths, denoted by n.

Vocabularies of 16,777,216, 1,084,793,035, 1,575,804,954 and 1,936,342,220, for 3-

gram, 4-gram, 5-gram and 6-gram respectively were extracted. Later TF and TFIDF

representations were calculated for each n-gram in each file.

In machine learning applications, the large number of features (many of which do not

contribute to the accuracy and may even decrease it) in many domains presents a

significant problem. Moreover, in our problem, the reduction of the number of

features is crucial, but must be performed while maintaining a high level of accuracy.

This is due to the fact that, as shown earlier, the vocabulary size may exceed billions

of features, far more than can be processed by any feature selection tool within a

reasonable period of time. Additionally, it is important to identify those terms that

appear in most of the files, in order to avoid vectors that contain many zeros. Thus,

we first extracted the features having the top 5,500 document frequency (formula 2)

4 http://www.kaspersky.com

values as a preliminary aggressive feature selection, on which later three feature

selection methods were applied. In order to check whether the stop words phenomena

happens in our problem domain we selected the 5,500 top features and 1,000-6,500

top features from the entire list ranked by the DF. The features selected from the top

1,000-6,500, in which the top 1000 features were removed, represented the idea of

stop-words in the textual domain, which we examined their potential effect here.

Feature Selection

We used a filters approach, in which a measure is used to quantify the correlation of

each feature to the class (malicious or benign) and estimate its expected contribution

to the classification task. After applying the filter each feature gets a rank which

quantifies its expected contribution in the classification task, from which later the

features with the top ranks are used. Note that the filter is applied on the dataset and

the measure is independent of any classification algorithm, which enables to compare

the performances of the different classification algorithms on the same subset of

features. We used three feature selection measures. As a baseline, we used the

document frequency measure DF (the amount of files in which the term appeared in),

Gain Ratio (GR) [8] and Fisher Score (FS) [21].

3.3.1 Gain Ratio

Gain Ratio was originally presented by Quinlan in the context of Decision Trees [8],

which was designed to overcome a bias in the Information Gain (IG) measure, and

which measures the expected reduction of entropy caused by partitioning the

examples according to a chosen feature. Given entropy E(S) as a measure of the

impurity in a collection of items, it is possible to quantify the effectiveness of a

feature in classifying the training data. Formula 4 presents the formula of the entropy

of a set of items S, based on C subsets of S (for example, classes of the items),

presented by Sc. Information Gain measures the expected reduction of entropy caused

by portioning the examples according to attribute A, in which V is the set of possible

values of A, as shown in Formula 3. These formulas refer to discrete values; however,

it is possible to extend them to continuous values attribute.

)(
||

||
)(),(

)(

v

AVv

v SE
S

S
SEASIG 



 (3)

||

||
log

||

||
)(2

S

S

S

S
SE c

Cc

c


 . (4)

The IG measure favors features having a high variety of values over those with only a

few. GR overcomes this problem by considering how the feature splits the data

(Formulas 5 and 6). Si are d subsets of examples resulting from portioning S by the d-

valued feature A.

),(

),(
),(

ASSI

ASIG
ASGR  (5)

||

||
log

||

||
),(

1

2
S

S

S

S
ASSI i

d

i

i


 (6)

3.3.2 Fisher Score

The Fisher score ranking technique calculates the difference, described in terms of

mean and standard deviation, between the positive and negative examples relative to a

certain feature. Formula 7 defines the Fisher score, in which Ri is the rank of feature i,

describing the proportion of the substitution of the mean of the feature i values in the

positive examples (p) and the negative examples (n), and the sum of the standard

deviation. The bigger the Ri, the bigger the difference between the values of positive

and negative examples relative to feature i; thus, this feature is more important for

separating the positive and negative examples. This technique is described in details

in [21].

nipi

nipi

iR
,,

,, ||








 (7)

Based on each feature selection measure we selected the top 50, 100, 200 and 300

features.

3.4 Classification Algorithms

We employed four commonly used classification algorithms: Artificial Neural

Networks (ANN), Decision Trees (DT), Naïve Bayes (NB), and their boosted

versions, BDT and BNB respectively, as well as Support Vector Machines (SVM)

with three kernel functions. We briefly describe the classification algorithms we used

in this study.

3.4.1 Artificial Neural Networks

An Artificial Neural Network (ANN) [22] is an information processing paradigm

inspired by the way biological nervous systems, such as the brain, process

information. The key element is the structure of the information processing system,

which is a network composed of a large number of highly interconnected neurons

working together in order to approximate a specific function, as shown in figure 1. An

ANN is configured for a specific application, such as pattern recognition or data

classification, through a learning process during which the individual weights of

different neuron inputs are updated by a training algorithm, such as back-propagation.

The weights are updated according to the examples the network receives, which

reduces the error function. Formula 8 presents the output computation of a two-

layered ANN, where x is the input vector, vi is a weight in the output neuron, g is the

activation function, wij is the weight of a hidden neuron and bi,o is a bias. All the ANN

manipulations were performed within the MATLAB(r) environment using the Neural

Network Toolbox.


























  

i

o

j

ijiji bbxwgvgxf)((8)

Figure 1. A typical architecture of a feed forward ANN, having five hidden neurons and a

single output neuron. The number of the hidden neurons and the number of the output neurons

may vary according to the analyzed data.

3.4.2 Decision Trees

Decision tree learners [24] are a well-established family of learning algorithms.

Classifiers are represented as trees whose internal nodes are tests of individual

features and whose leaves are classification decisions (classes). Typically, a greedy

heuristic search method is used to find a small decision tree, which is induced from

the data set by splitting the variables based on the expected information gain. This

method correctly classifies the training data. Modern implementations include

pruning, which avoids the problem of over-fitting. In this study, we used J48, the

Weka [24] version of the C4.5 algorithm [23]. An important characteristic of decision

trees is the explicit form of their knowledge, which can be easily represented as rules.

3.4.3 Naïve Bayes

The Naïve Bayes classifier is based on the Bayes theorem, which in the context of

classification states that the posterior probability of a class is proportional to its prior

probability, as well as to the conditional likelihood of the features, given this class. If

no independent assumptions are made, a Bayesian algorithm must estimate

conditional probabilities for an exponential number of feature combinations. Naive

Bayes simplifies this process by assuming that features are conditionally independent,

given the class, and requires that only a linear number of parameters be estimated.

The prior probability of each class and the probability of each feature, given each

class is easily estimated from the training data and used to determine the posterior

probability of each class, given a set of features. Empirically, Naive Bayes has been

shown to accurately classify data across a variety of problem domains [25].

3.4.4 Adaboost.M1 (BDT and BNB)

Boosting is a method for combining multiple classifiers. Adaboost was introduced by

[26] and among its many variants is the Adaboost.M1 that is implemented in Weka.

Given a set of examples and a base classifier, it generates a set of hypotheses

combined by weighted majority voting. Learning is achieved in iterations. In each

iteration a new set of instances is selected by favoring misclassified instances of

previous iterations. This is done using an iteratively updated distribution that includes

a probability for each instance to be selected in the next iteration. We used the

Adaboost.M1 to boost J48 decision trees and Naïve Bayes.

3.4.5 Support Vector Machines

SVM is a binary classifier, which finds a linear hyperplane that separates the given

examples of two classes known to handle large amounts of features. Given a training

set of labeled examples in a vector format, the SVM attempts to specify a linear

hyperplane that has the maximal margin, defined by the maximal (perpendicular)

distance between the examples of the two classes. The examples lying closest to the

hyperplane are known as the supporting vectors. The normal vector of the hyperplane

(denoted as w in forumla 9, in which n is the number of the training example) is a

linear combination of the supporting vectors multiplied by LaGrange multipliers

(alphas). Figure 2 illustrates a two dimensional space, in which the examples (vectors)

are located according to their features values in two groups based on their labels

(classes +1 and -1) and the hyperplane which is derived to separate them linearly

according to their label.

Class (+1)

Class(-1)

margin

W

Figure 2. An SVM that separates the training set into two classes, having maximal margin in a

two dimensional space.

Often the data set cannot be linearly separated, so a kernel function K is used. The

SVM actually projects the examples into a higher dimensional space to create a linear

separation of the examples. Note that when the kernel function satisfies Mercer's

condition, as was explained by Burges [27], For the general case, the SVM classifier

will be in the form shown in formula 9, while n is the number of examples in training

set, and w is normal of the hyperplane. We examined three commonly used kernels:

Linear (SVM-LIN), Polynomial (SVM-POL) and RBF (SVM-RBF). We used the

Lib-SVM implementation5.









 )())(()(

1

n

iii xxKysignxwsignxf  (9)

As it derived from the theoretic basis of SVM and was also empirically shown by

Joachim [28], one should select the appropriate kernel function with the appropriate

configurations of the parameters, while, usually, the more sophisticated the kernel is,

the better the performance and the results are. The ranks of the sophistication are:

linear, Polynomial, RBF so that linear is the simplest one, and RBF is more

sophisticated than the two others. Note that with the sophistication of the kernel, the

training time and the computational resources requirements are larger.

Figure 3 (which were produced by the applet which is available from the LIBSVM

website [29]) illustrate the use of the kernels given the same training-set in an SVM

with Linear and Polynomial kernels. While the SVM with Linear kernel (right-side) is

not sophisticated enough to determine a hyperplane that separates the training-set

optimally (thus, each class vectors are located separately), the SVM with the

Polynomial kernel (left-side) has successfully determined such one:

Figure 3: The Polynomial (Left) and Linear (Right) kernels applied to the same training set,

The Polynomial has successfully separated the training-set hyperplane whereas the Linear

hasn't.

Figure 4 illustrates the use of the RBF and Polynomial kernels in an SVM applied to

the same complicated dataset. While the SVM with Polynomial kernel (left-side) is

not sophisticated enough to determine hyperplane that separates the training-set, the

SVM with the RBF kernel (right-side) has successfully determined such one.

5 http://www.csie.ntu.edu.tw/˜cjlin/libsvm

Figure 4: The Polynomial (Left) and RBF kernels (Right) are applied to the same training set.

The RBF has successfully separated the data-set whereas the Polynomial hasn't, it can be

observed that the RBF kernel is very sophisticated and powerful also towards complicated

training-set.

4 Evaluation

4.1 Research Questions

We wanted to evaluate the proposed methodology for the detection of unknown

malicious codes through two main experiments. The first experiment was designed to

determine the best conditions, including four aspects:

1. Which term representation is better, TF or TFIDF?

2. Which n-gram is the best: 3, 4, 5 or 6?

3. What is the better range for global feature selection, top 5500 or 1000 – 6500?

4. Which top-selection is the best: 50, 100, 200 or 300 and which features selection:

DF, FS and GR?

5. Which Malicious Code Percentage in the training set will be the best for any

Malicious Code Percentage in the test set, and for real life conditions?

To answer the listed questions we first performed a wide set of experiments to

identify the best term representation, n-gram, global feature selection and top

selection and feature selection measure. Using the best settings we performed

additional set of experiments focusing on the imbalance problem.

4.2 Evaluation Measures

For evaluation purposes, we wanted to measure the accuracy of the classification

algorithms, as well as the false positive and true positive which are often very

important, in order to be able to tune the classifier for the best needs. For that we used

the common set of measures, which included the True Positive Rate (TPR) measure,

which is the number of positive instances classified correctly, as shown in formula 10,

False Positive Rate (FPR), which is the number of negative instances misclassified

(formula 10), and the Total Accuracy, which measures the number of absolutely

correctly classified instances, either positive or negative, divided by the entire number

of instances shown in formula 11.

||||

||

FNTP

TP
TPR


 ;

||||

||

TNFP

FP
RFP


 (10)

||||||||

||||

FNTNFPTP

TNTP
AccuracyTotal




 (11)

Total Accuracy is the most intuitive evaluation measure and is very often used in

Machine Learning. It simply returns the percentage of right choices made by the

classifier. One thing it does not do, however, is indicate whether the classifier is more

adept at classifying positive or negative examples. This is often important

information, like in our problem where we are interested in finding out what

proportion of the malcodes present in the data are actually detected by the classifier

(TPR) and what proportion of the virus-free data is wrongly classified as virus data

(FPR). Even if a classifier is good at detecting viruses, it might be discarded from

consideration because of the large number of false alarms (high FPR) it generates.

Information of this kind could not be obtained from the Total Accuracy alone, and

this is why analyses of TPR and FPR results were also included.

In fact, for the imbalance analysis, Total Accuracy is not only misinformed, but it is,

often, simply an inappropriate measure of performance. Indeed, in such

circumstances, a trivial classifier that predicts every case as the majority class could

achieve very high accuracy in extremely skewed domains. Several proposals have

been made to address this issue including the decomposition of accuracy into its basic

components (TPR and FPR) [14], the use of ROC Analysis [30] or the G-Mean [31].

In this paper, we selected to decompose accuracy into its basic components along

with the use of the G-mean. This approach is conceptually simpler than using ROC

Analysis and sheds sufficient light on our results.

The g-means measure (formula 13) which is often used in imbalance datasets

evaluation studies, is based on the sensitivity and specificity measures (formulas 12).

||||

||

FNTP

TP
ySensitivit


 ;

||||

||

FPTN

TN
ySpecificit


 (12)

ySpecificitySensitivitmeansG * (13)

Sensitivity is exactly the same thing as the TPR introduced earlier. The difference in

name simply stems from the fact that various fields of study came up with the same

measures of success, but named them differently. The term ―Sensitivity‖ was coined

in the medical domain while TPR is the name used in the Machine Learning

community. Specificity is the opposite of FPR. It measures the proportion of negative

data rightly labeled as negative. In our problem, this corresponds to the proportion of

uninfected data rightly labeled as such. Sensitivity and Specificity, thus, give us the

same information as TPR and FPR. The G-mean, however, combines this information

in a way different from the way in which Total Accuracy does. By multiplying the

components together, indeed, the G-mean sheds light on whether the classifier is

lacking on one or the other aspect of classification (detection of positive examples and

recognition of a negative example). This is information that is not provided by Total

Accuracy and which is critical, as previously discussed, in the case of class

imbalances. This is why G-mean results were also provided in the class imbalance

study.

5 Experiments and Results

5.1 Experiment 1

To answer the four questions, presented earlier, we designed a wide and

comprehensive set of evaluation runs, including all the combinations of the optional

settings for each of the aspects, amounting in 1536 runs in a 5-fold cross validation

format for all eight classifiers. Note that the files in the test-set were not in the

training-set presenting unknown files to the classifier.

5.1.2 Global Feature Selection versus n-grams

First we wanted to find the best terms representation, tf vs tfidf, and the global feature

selection. Figure 5 presents the mean accuracy of the combinations of the term

representations and n-grams. While the mean accuracies are quite similar, the top

5,500 features performed better, as did the TF representation and the 5-gram. Having

the TF out-performing has meaningful computational advantages; we will elaborate

on these advantages in the Discussion. Additionally, the 5-grams outperformed the

other n-gram sizes.

3 Grams 4 Grams 5 Grams 6 Grams
0.82

0.825

0.83

0.835

0.84

0.845

0.85

0.855

A
c
c
u

ra
c
y

TF 1000-6500

TFIDF 1000-6500

TF 5500

TFIDF 5500

Figure 5. While their mean accuracies were quite similar, the top 5,500 features out-performed

the top 1000-6500, TF out-performed TFIDF and the 5-gram out-performed the other n-gram

sizes.

5.1.3 Feature Selections and Top Selections

To identify the best feature selection method and the top amount of features we

calculated the mean accuracy of each option, as shown in Figure 6. Generally, the

Fisher score was the superior method, starting with high accuracy, even with 50

features. Unlike the other methods, in which the 300 features out-performed, the DF‘s

accuracy decreased after the selection of more than 200 features, while the GR

accuracy significantly increased as more features were added.

Top 50 Top 100 Top 200 Top 300
0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88
A

c
c
u

ra
c
y

DF

Fisher's Score

Gain Ratio

Figure 6. The Fisher score was very accurate when used with just 50 features, and maintained

this high performance level as the number of features increased. When more than 200 features

were added, the accuracy of GR increased significantly and the accuracy of DF decreased.

5.1.4 Classifiers

The results of each classifier under the best settings identified before for all the

classifiers (section 5.1.3), including the top 300 Fisher score-selected 5-gram terms

represented by TF from the top 5500 features are presented in Table 2. The BDT, DT

and ANN outperform and demonstrated low false positive rates, while the SVM

classifiers also performed very well. We suggest that the poor performance of the

Naïve Bayes, may be explained by the independence assumption of the NB classifier.

Table 2. Classifiers performance: the BDT, DT and ANN out-performed, while maintaining

low levels of false positives.

Classifier Accuracy FP FN

ANN 0.941 0.033 0.134

DT 0.943 0.039 0.099

NB 0.697 0.382 0.069

BDT 0.949 0.040 0.110

BNB 0.697 0.382 0.069

SVM-lin 0.921 0.033 0.214

SVM-poly 0.852 0.014 0.544

SVM-rbf 0.939 0.029 0.154

5.2 Experiment 2 – The Imbalance Problem

In the second experiment, we present our main contribution in this study. In this

experiment we investigated rigorously the imbalance problem in our domain and to

actually answer the fifth research question. The fifth research question presents the

question of what are the optimal proportions of the benign and malicious contents in

the training set for varying levels of proportions in the test set, which reflect the

situation in real life. This is a very useful investigation for practical purposes, since

when applying this technique the proportions in the training set should be considered

according to the expected proportions in the stream of the file, which was represented

in this experiment by the test set.

We used the best configuration and the top 300 Fisher Score-selected 5-gram terms

represented by TF from the top 5500 features. We created five levels of Malicious

Files Percentage (MFP) in the training set (16.7, 33.4, 50, 66.7 and 83.4%), which

represent the proportions which can be controlled when applying this technique. For

example, when referring to 16.7%, we mean that 16.7% of the files in the training set

were malicious and 83.4% were benign. The test set represents the 'real-life' situation,

while the training set represents the set-up of the classifier, which is controlled. While

we assume that a MFP above 30% (of the total files) is not a realistic proportion in the

stream of real networks, but we used test set that included high percentages of

malicious files in order to gain insights into the behavior of the classifiers in these

situations. Our study examined 17 levels of MFP (5, 7.5, 10, 12.5, 15, 20, 30, 40, 50,

60, 70, 80, 85, 87.5, 90, 92.5 and 95%) in the test sets. Eventually, we ran all the

product combinations of five proportions in the training sets and 17 test sets, for a

total of 85 runs for each classifier. We created two sets of data sets in order to

perform a 2-fold cross validation-like evaluation to make the results more significant.

We analyze all the results using four evaluation measures: the True Positive Rate, the

False Positive Rate, the combination of them by the Accuracy and the g-means

measure which is often used in imbalance problems.

5.2.1 Training-Set Malcode Percentage

In this analysis we evaluated the performance of each training-set MFP settings

against the varying levels of MFP in the test-sets. Thus, for each MFP in the training

set the mean values of the measures are presented. Figure 7 presents the mean

accuracy (averaged over all the MFP levels in the test-sets) of each classifier for each

MFP level in the training set.

All the classifiers, beside NB, demonstrated an increased FPR and TPR with the

increase of the MFP in the training-set. According to the Accuracy and g-means

measures the classifiers behaved similarly. ANN, BDT and DT demonstrated the

highest accuracy, and relatively stable, performance across the different MFP levels,

while BNB, NB and SVM-POL generally performed poorly. SVM-RBF and SVM-

LIN performed well, but not consistently. They were both most accurate at the 50%

level, while the accuracy of SVM-POL increased as more malicious examples were

presented.

FPR TPR

Accuracy GMeans

Figure 7. ANN, BNB and DT out-performed, with consistent accuracy, across the different

malcode content levels.

5.2.2 10% Malcode Percentage in the Test Set

We consider the 10% MFP level in the test set as a realistic scenario, which reflects

real life conditions, in which there are 10% of malicious contents.

Figure 8 presents the mean accuracy in the 2-fold cross validation of each classifier

for each MFP level in the training set, with a fixed level of 10% MFP in the test set.

Thus, each point in the curve is the average of all the runs with the varying MFPs in

the training sets. Accuracy levels above 95% were achieved when the training set had

a MFP of 16.7%, while a rapid decrease in accuracy was observed when the MFP in

the training set was increased. Thus, the optimal proportion in a training set for

practical purposes should be in the range of 10% to 40% malicious files. This is in

line with [19] who concluded, from their study, that when accuracy is used, the

optimal class distribution in the training set tends to be near the natural class

distribution.

FPR TPR

Accuracy GMeans

Figure 8. Greater than 95% accuracy was achieved for the scenario involving a low level

(16.7%) of malicious file content in the training set.

5.2.3 Relations among MFPs in Training and Test Sets

In subsections 5.2.1 and 5.2.2 we presented the mean results of varying MFP levels of

the test set (5.2.1) and for 10% MFP in the test (5.2.2) for the each MFP in the

training set. Here we present specifically the accuracy for each experiment of a MFP

level in the training vs a MFP level in the test. Thus, in the following figures a three-

dimension results presentation, in which the horizontal axes are the training set MFP

and the test set MFP and the vertical axis is the accuracy, is given for each classifier.

This presentation gives a more detailed guideline for setting the MFP in the training

set for each expected MFP in the stream, reflected by the test set.

Most of the classifiers behaved optimally when the MFP levels in the training-set and

test-set were similar, except for the NB and BDT, which showed low performance

levels earlier. This indicates that when configuring a classifier for a real-life

application, the MFP in the training-set has to be set accordingly.

Figure 9 – ANN Figure 10 – DT

Figure 11 – NB Figure 12 – BNB

Figure 13 – BDT Figure 14 – SVM-LIN

Figure 15 - SVM-POL Figure 16 – SVM-RBF

6 Discussion and Conclusions

We presented a methodology for the representation of malicious and benign

executables for the task of unknown malicious code detection. This methodology

enables the highly accurate detection of unknown malicious code, based on

previously seen examples, while maintaining low levels of false alarms. In the first

experiment, we found that the TFIDF representation has no added value over the TF,

which is not the case in information retrieval applications. This is very important,

since using the TFIDF representation introduces some computational challenges in

the maintenance of the collection when it is updated. In order to reduce the number of

n-gram features, which ranges from millions to billions, we first used the DF measure

to select the top 5500 features. The Fisher Score feature selection outperformed the

other methods and using the top 300 features resulted the best performance.

Generally, the ANN and DT achieved high mean accuracies, exceeding 94%, with

low levels of false alarms.

In the second experiment, we examined the relationship between the MFP in the test

set, which represents real-life scenario, and in the training-set, which being used for

training the classifier. In this experiment, we found that there are classifiers which are

relatively inert to changes in the MFP level of the test set. In general, the best mean

performance (across all levels of MFP) was associated with a 50% MFP in the

training set (Fig. 7). However, when setting a level of 10% MFP in the test-set, as a

real-life situation, we looked at the performance of each level of MFP in the training

set. A high level of accuracy (above 95%) was achieved when less than 33% of the

files in the training set were malicious, while for specific classifiers, the accuracy was

poor at all MFP levels (Fig. 8). Finally, we presented a 3-dimensional representation

of the results at all the MFP levels for each classifier (Figs. 9-16). In General, the best

performance was on the diagonal, where the MFP levels in the training-set and the

test-set were equal. We found a decreased accuracy as the MFP of the training set and

test set differs, while NB did not seem to be affected by the level of MFP in the

training-set and was influenced only by the MFP level in the test-set. In NB the

accuracy increased as the MFP in the test-set increased.

Based on our extensive and rigorous experiments, we conclude that when one sets up

a classifier for use in a real-life situation, he should consider the expected proportion

of malicious files in the stream of data. Since we assume that, in most real-life

scenarios, low levels of malicious files are present, training sets should be designed

accordingly. In [32] a more general version of n-grams, called n-perms is proposed in

which the order of the sequence ignored in order to detect similar permutations of

code. As future work we would like to examine the use of n-perms as a more general

representation of the code.

References

[1] E. Filiol and S. Josse, A Statistical Model For Undecidable Viral Detection, Journal in Computer

Virology, 3: 65-74, 2007.

[2] E. Filiol, Malware Pattern Scanning Schemes Secure Against Black-Box Analysis, Journal in
Computer Virology, 2: 35-50, 2006.

[3] Gryaznov, D. Scanners of the Year 2000: Heuritics, Proceedings of the 5th International Virus

Bulletin, 1999.
[4] Schultz, M., Eskin, E., Zadok, E., and Stolfo, S., Data mining methods for detection of new

malicious executables, in Proceedings of the IEEE Symposium on Security and Privacy, 178-184,

2001.
[5] Abou-Assaleh, T., Cercone, N., Keselj, V., and Sweidan, R. N-gram Based Detection of New

Malicious Code, in Proceedings of the 28th Annual International Computer Software and

Applications Conference (COMPSAC'04), 2004.
[6] Kolter, J.Z. and Maloof, M.A., Learning to detect malicious executables in the wild, in Proceedings

of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

470–478. New York, NY: ACM Press, 2004.

[7] Mitchell T. Machine Learning, McGraw-Hill, 1997.

[8] Henchiri, O. and Japkowicz, N., A Feature Selection and Evaluation Scheme for Computer Virus
Detection. Proceedings of ICDM-2006: 891-895, Hong Kong, 2006.

[9] D. Reddy, A. Pujari, N-gram Analysis For Computer Virus Detection, Journal in Computer

Virology, 2: 231–239, 2006.
[10] Kubat, M. and Matwin, S., Addressing the Curse of Imbalanced Data Sets: One-Sided Sampling, in

Proceedings of the Fourteenth International Conference on Machine Learning , pp. 179-186, 1997.

[11] Fawcett, T.E. and Provost, F., Adaptive Fraud Detection, In Data Mining and Knowledge
Discovery , Volume 1, Number 3, pp. 291-316, 1997.

[12] Ling, C.X. and Li, C., , Data Mining for Direct Marketing: Problems and Solutions , in Proceedings

of the Fourth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining ,
pp. 73-79, 1998.

[13] Chawla, N. V., Japkowicz, N., and Kotcz, A. Editorial: special issue on learning from imbalanced

data sets. SIGKDD Explorations Newsletter 6(1):1-6, 2004.
[14] Japkowicz, N. and Stephen, S., The Class Imbalance Problem: A Systematic Study, Intelligent Data

Analysis Journal, Volume 6, Number 5, 2002.

[15] Chawla, N.V., Bowyer, K.W., Hall, L.O. & Kegelmeyer, W.P., SMOTE: Synthetic Minority Over-

sampling TEchnique , Journal of Artificial Intelligence Research (JAIR), Volume 16, pp. 321-357,

2002.

[16] Lawrence, S., Burns, I., Back, A.D., Tsoi, A.C., Giles, C.L., Neural Network Classification and
Unequal Prior Class Probabilities in G. Orr, R.-R. Muller, and R. Caruana, editors, Tricks of the

Trade, Lecture Notes in Computer Science State-of-the-Art Surveys, pp. 299-314. Springer Verlag,

1998.
[17] Chen C., Liaw, A., and Breiman, L., Using random forest to learn unbalanced data. Technical

Report 666, Statistics Department, University of California at Berkeley, 2004.

[18] K. Morik, P. Brockhausen, T. Joachims, Combining Statistical Learning with a Knowledge-Based
Approach - A Case Study in Intensive Care Monitoring. ICML: 268-277, 1999.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Henchiri:Olivier.html
http://www.informatik.uni-trier.de/~ley/db/conf/icdm/icdm2006.html#HenchiriJ06
http://www.acm.org/sigs/sigkdd/explorations/issue.php?issue=current

[19] G. Weiss and F. Provost, Learning when Training Data are Costly: The Effect of Class Distribution

on Tree Induction, Journal of Artificial Intelligence Research, 19:315-354, 2003.

[20] Salton, G., Wong, A., and Yang, C.S.,A vector space model for automatic indexing.
Communications of the ACM, 18:613-620, 1975.

[21] Golub, T., Slonim, D., Tamaya, P., Huard, C., Gaasenbeek, M., Mesirov, J., Coller, H., Loh, M.,

Downing, J., Caligiuri, M., Bloomfield, C., and E. Lander, E., Molecular classification of cancer:
Class discovery and class prediction by gene expression monitoring, Science, 286:531-537, 1999.

[22] Bishop, C., Neural Networks for Pattern Recognition. Clarendon Press, Oxford, 1995.
[23] Quinlan, J.R., C4.5: programs for machine learning. Morgan Kaufmann Publishers, Inc., San

Francisco, CA, USA, 1993.

[24] Witten, I.H., and Frank, E. (2005) Data Mining: Practical machine learning tools and techniques,

2nd Edition, Morgan Kaufmann Publishers, Inc., San Francisco, CA, USA.

[25] Domingos, P., and Pazzani, M. (1997) On the optimality of simple Bayesian classifier under zero-

one loss, Machine Learning, 29:103-130.
[26] Y. Freund and R. Schapire, A Decision-Theoretic Generalization of On-Line Learning and an

Application to Boosting, journal of computer and system sciences 55, 119-139, 1997.

[27] C.J.C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and
Knowledge Discovery, 2(2):955-974, 1998.

[28] Joachims, T., Making large-scale support vector machine learning practical. In B. Sch¨olkopf, C.

Burges, A. S., editor, Advances in Kernel Methods: Support Vector Machines. MIT Press,
Cambridge, 1998.

[29] C. Chang and C. Lin, LIBSVM: a library for support vector machines, 2001.

[30] Provost, F. and T. Fawcett, Robust Classification Systems for Imprecise Environments, In
Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-98), 1998.

[31] Kubat M., Holte, R. and Matwin, S., Machine Learning for the Detection of Oil Spills in Satellite

Radar Images , in Machine Learning , Volume 30, pp. 195-215, 1998.
[32] Md. Karim, A. Walenstein, A. Lakhotia, L. Parida, Malware phylogeny generation using

permutations of code, Journal in Computer Virology, 1: 13-23, 2005.

http://www.springerlink.com/content/?Author=Md.+Enamul.+Karim
http://www.springerlink.com/content/?Author=Andrew+Walenstein
http://www.springerlink.com/content/?Author=Arun+Lakhotia
http://www.springerlink.com/content/?Author=Laxmi+Parida
http://www.springerlink.com/content/u573334818560381/?p=b43a0184b67747cabee8a9b1dcf7d6da&pi=3
http://www.springerlink.com/content/u573334818560381/?p=b43a0184b67747cabee8a9b1dcf7d6da&pi=3
http://www.springerlink.com/content/u573334818560381/?p=b43a0184b67747cabee8a9b1dcf7d6da&pi=3

